Victims of floods in Pakistan walk through water-filled streets in Nowshera. Source: UN Photo/WFP/Amjad Jamal.
“Climate” means average weather conditions, usually over a period of 30 years. "Climate change" is the altering of these conditions. Humanity is extraordinarily sensitive to climate, and civilization might not have emerged without the warm, stable weather conditions that have prevailed since the end of the last ice age more than 10,000 years ago. That stability has collapsed over the last few decades, and now weather conditions are spiralling out of control. If we do not take action now to stop climate change, destructive weather will bring devastation capable of forever destroying much of our planet and the life it supports.

The Consensus

Climate change, in particular global warming, is an indisputable fact. Scientists overwhelmingly agree that pollution is the main cause of this change. Recent study has shown that there is scientific consensus on climate change among more than 97% of experts actively publishing on the topic. Other studies have revealed no trace of climate denial in hundreds of mainstream scientific articles. Such a high level of agreement among specialists is equal to the scientific consensus supporting the understanding that smoking is a risk factor for lung cancer.

The Intergovernmental Panel on Climate Change (IPCC) – the world’s leading authority on the issue – pooled the work of more than 2,000 experts in its last major report in 2007.

Are Scientists in Agreement?

```
<table>
<thead>
<tr>
<th></th>
<th>Climate Science consensus</th>
<th>World Public belief</th>
<th>US Public belief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>97%</td>
<td>51%</td>
<td>38%</td>
</tr>
</tbody>
</table>
```

A handful of errors recently uncovered from among the vast quantities of information covered in the report have not put the Panel’s main findings into question. Discussions on how to reform the IPCC’s working methods are ongoing. And prominent critics have found the IPCC’s conclusions conservative or accurate in varying degrees. The complexity of the subject is partially to blame. Mainstream media may also be contributing to the public’s lack of awareness about climate change. Most people form their opinions about science through debate in the media. But the principle of “balanced reporting” automatically gives disproportionate emphasis to climate scepticism out of fairness to a side of the argument that no longer exists. The serious discord between science and the general public is a travesty given how important public opinion is in mobilizing the type of political action so desperately needed to tackle climate change today.

The most authoritative academic bodies from around the world all support the IPCC and the basic consensus on climate change. In 2001, the Bush Administration asked the US National Academy of Sciences to examine the question, and it responded in clear support of the prevailing consensus. As The Royal Society in the UK pointed out, those who disagree with the consensus on climate change have failed to put forward any competing models. And yet the consensus among specialists contrasts starkly with the opinion of the general public. Only half of the world’s population, and as little as 38% of the US population (depending on the study used), believes scientists are in consensus. The complexity of the subject is partially to blame. Mainstream media may also be contributing to the public’s lack of awareness about climate change. Most people form their opinions about science through debate in the media. But the principle of “balanced reporting” automatically gives disproportionate emphasis to climate scepticism out of fairness to a side of the argument that no longer exists. The serious discord between science and the general public is a travesty given how important public opinion is in mobilizing the type of political action so desperately needed to tackle climate change today.

The well-known greenhouse effect is a perfectly natural characteristic of our planet that sustains life. Gases such as water vapour, CO₂, methane, and others cover the earth’s surface closely like a blanket, slowing the escape of heat into the boundlessly freezing universe outside of the planet’s atmosphere. Without this “blanket” the planet’s average surface temperature (now 14 degrees Celsius or 57 degrees Fahrenheit) would be 30 degrees Celsius or 60 degrees Fahrenheit colder. If our climate were stable, the planet would see no real loss or gain of heat into outer space over the course of a year. But we are in imbalance, with slightly more heat entering earth (from the sun) every year than is leaving it.

This global warming is happening because we are creating more heat-trapping greenhouse gases than in the past. We do so because the basic activities of human society – from energy production, transport, and industry to deforestation – all produce greenhouse gases. More greenhouse gases mean a stronger greenhouse effect, with less heat escaping back into outer space, and a hotter planet. According to records of the last 400,000 years of the earth’s past, every major peak or trough in temperature has been accompanied by a peak or trough in greenhouse gases such as CO₂. Today’s CO₂ levels exceed anything seen over this time.
THE CHANGES

Our earth has warmed by roughly 0.8 degrees Celsius or 1.4 degrees Fahrenheit since the industrial revolution, when serious levels of pollution began. CO₂ levels have grown by more than 30% since that time and continue to grow every year.⁷³³

But most of the change has taken place since the 1970 and 80s. The last three decades are clearly the hottest on record since 1850.⁷³⁴ And of the 20 hottest years on record, only three were before the 1990s (they were in the 1980s).⁷³⁵

The heating up of the atmosphere is causing a variety of other major environmental changes, such as warmer oceans and widespread melting of glaciers and ice. Since 1980, all of the world’s glaciers have either been in long-term retreat or have disappeared.⁷³⁶

The melting of ice and the heating up of the earth’s oceans -- which expand as they warm -- contribute to a rise in global sea-levels. And sea-level rise has doubled in speed over just the last few decades.⁷³⁷

We see shocking evidence of change in the Arctic. Most of the Arctic is ocean. In 1980, Arctic ice covered a minimum area of 7 million square kilometres, or around 3 million square miles, of that ocean during the height of summer. By 2007, that area had halved to just 3.5 million square kilometres, or less than 1.5 million square miles.⁷³⁸

The Arctic region, when defined as an area of consistently cold temperatures, has actually been retreating toward the North Pole at a rate of some 35 miles or 56 kilometres per decade over the last 30 years.⁷³⁹

Many of these changes are self-reinforcing, establishing a vicious cycle that will continue to accelerate climate change. In the Arctic, for instance, less sea ice means less heat reflected back into space, and warmer oceans absorb less heat and CO₂, leaving more of both in the atmosphere. Worse still, as the Arctic region shrinks, otherwise permanently frozen land (permafrost) on its margins could release up to a billion tons of greenhouse gases per year as it thaws (or some 3% of today’s global emissions).⁷⁴⁰

Not all changes are felt the same everywhere. Rainfall, for instance, is increasing due to higher temperatures, which cause moisture to evaporate faster.⁷⁴¹ But while northern parts of America, Asia and Europe, as well as much of South America have experienced increases in rain, areas of Africa, the Mediterranean, and Asia have seen rainfall drop as weather patterns shift.⁷⁴²

Other effects include more hot days and nights, more heat waves and heavy rain, more flooding and more drought.⁷⁴³

All of these changes have profound effects on plant and animal life, including significant adverse effects on biodiversity (such as species extinctions) and, of course, on human populations, which is a key topic of this report.⁷⁴⁴
THE MOMENTUM

None of these changes shows any sign of slowing. Quite the opposite: One of the largest ever symposiums on climate science, held in Copenhagen in March 2009, concluded that, in most areas, change was happening at the upper estimates or faster than foreseen by scientists only two years earlier.\(^{385}\)

Greenhouse gases, rises in average temperatures and sea-levels, disappearing ice and glaciers, and other indicators of change far exceed anything seen over much of the last million years of life on earth.\(^{386}\) And much of that change has occurred over the last 30 years.\(^{387}\)

Temperature fluctuations have occurred over the past millennia, but civilization emerged during a period of relative stability in climate.\(^{388}\)

While a stable climate has allowed life on earth to flourish, an unstable climate can have the opposite effect. Increasingly, rapid change is outstripping the ability of the environment, animal life, and human society to naturally adapt. Plant and animal species rendered extinct will not return. And many of the effects of an unstable climate are compounded by factors such as population growth and increasing consumer consumption, which already strain the planet’s ability to support some 7 billion people and counting.\(^{389}\)

It’s important to note that there is a long delay between any increase or decrease in greenhouse gases and a corresponding warming or cooling effect on the planet. This is mainly because the earth’s oceans absorb heat but only release it back into the atmosphere over a series of decades. So continued production of greenhouse gases doesn’t just mean a warmer planet today, but a continuous heating up of our planet for years to come.

There is currently enough heat in the oceans to cause an additional 0.6 degrees Celsius or one degree Fahrenheit of warming over the next decades even if we were to stop emitting greenhouse gases today.\(^{385}\) That means 1.4 degrees Celsius or 2.5 degrees Fahrenheit of warming is already unavoidable and something we must accept.\(^{385}\) Depending on the amount of pollution we continue to release, we could well reach that temperature by 2030.\(^{385}\) This fact not only underscores the necessity of acting well in advance to reduce emissions but also compels us to prepare for the far greater impacts of climate change that will hit us during the coming 20 years.

1.4 DEGREES CELSIUS OR 2.5 DEGREES FAHRENHEIT OF WARMING IS ALREADY UNAVOIDABLE AND SOMETHING WE MUST ACCEPT

THE WINDOW OF OPPORTUNITY

The international community has agreed that 2 degrees Celsius or 3.6 degrees Fahrenheit of warming above pre-industrial levels is a threshold we must not exceed.\(^{392}\) There are legitimate fears that over-passing that level could cause irreversible changes to the earth’s climate -- termed “runaway climate change” -- that feed back into themselves in a self-perpetuating cycle of warming no longer stoppable by emission reductions.\(^{393}\)

Even at that level however, we could see the extinction of 30% of the planet’s species, the disappearance of the world’s coral reefs, and severe water shortages and hunger for hundreds of millions of people.\(^{394}\)

Greenhouse gases are measured in parts per million (ppm). They amount to about 390 ppm today and are growing at roughly 2 ppm per year.\(^{395}\) The IPCC recommends limiting greenhouse gas concentrations to 400 ppm in order to avoid 2-2.4 degrees Celsius or 3.6-4.3 degrees Fahrenheit of warming. That would mean halting all emissions in a matter of just a few years, which is unrealistic given that emissions currently grow at a rate of around 3% per year.\(^{396}\)

But if we delay action until after 2020, we will be faced with having to make enormous emission reductions of 5% per year just to have a chance at keeping to the internationally recognized safety threshold.\(^{397}\)

Decisive and comprehensive action must begin now. If not, massive costs linked both to hasty emission reductions and/or colossal and irreversible impacts of climate change will be inevitable. The costs of climate change in human, economic, and environmental terms as outlined in this report are only a shadow of what humanity will face in the years to come.
Hurricane Dennis batters palm trees and floods parts of Naval Air Station Key West’s Truman Annex in the United States. Source: U.S. Navy/Jim Brooks.
RESEARCH GAPS

Important research gaps limit our understanding of the impact of climate change on human society. That equally limits the effectiveness of our response to counteracting its negative effects, as well as our understanding of the true extent of the climate crisis. Significant resources should be channelled urgently into addressing these and other key shortcomings in our understanding of climate vulnerability.

THE MONITOR QUANTIFICATION/ATTRIBUTION ISSUES

Quantitatively attributing impacts to climate change will be of vital importance to preparing any response that seeks to address the added stresses triggered by global warming. Such quantifications are particularly weak in the area of extreme weather, especially tropical cyclones, where scientists still disagree on the extent of the observed intensification effect on major storms, especially in the North Atlantic. Quantification must go far beyond measures of changes in the actual physical effects -- such as storm intensity, frequency, or spatial occurrence variations -- to a more comprehensive understanding of the socio-economic and human effects that result from such changes, in particular as relates to possible threshold breaching or tipping-points when communities become overwhelmed as a result of just small excess pressures.

The impact of climate change on marine fisheries is another major area of concern lacking any clear scientific quantification scenarios. Several other such areas are mentioned below under “Information Gaps”.

INFORMATION GAPS

Inadequate understanding of the impact dynamics of climate change on a number of key phenomenon with known climate sensitivities (negative and positive) require more thorough enquiry, including:

- Freshwater fisheries
- Habitat degradation to Arctic, alpine and high-latitude communities
- The full spectrum of climate-sensitive diseases, including in particular infection rates/morbidity and other infection dynamics
- Hail
- Mudslides (mass movement - wet)
- In the field of development: access to education, sanitation, and energy or school participation rates
- International trade
- Political stability
- Conflict
- Migration and displacement
- Service or industry sectors of the economy, such as transport, tourism, textiles, energy, brewing, plastics, and many other business fields potentially affected especially by pass-on effects of climate change

DATA

The Monitor relies on internationally standardized data sets. The lack of standardized disaster and impact accounting -- in particular, inconsistencies, socio-economic or cultural differences in reporting of disaster events, the number of affected people/people in need of emergency assistance, injuries, damage costs, and losses -- greatly limit comparability across the board.

There is an urgent need to harmonize reporting and maintain stringent gathering and coverage of such information according to international standards. In other cases, data is reasonably reliable but irregularly updated, such as the comprehensive World Health Organization’s Global Burden of Disease Database (WHO). Some data in authoritative databases, such as CRED EM-DAT have likely inaccuracies. Several countries have been entirely excluded from the Climate Vulnerability Monitor because of gaps across almost every impact area, something that particularly affects very small countries and small island developing states.

SPATIAL SCALE

Information on sub-national scales varies hugely from country to country. Governments should prioritize national assessments of vulnerability down to the community scale, where impacts actually play out on society.

CLIMATE INFORMATION

Climate models vary enormously in their prediction of different mainstay climate effects, such as changes in rainfall or temperature over all time horizons, short, medium and longer term. More detailed information is needed about the way in which water vapour -- the main greenhouse gas -- behaves in the atmosphere under external climate forcing from non-natural sources. Further research should be devoted to improving understanding of the behaviour of water vapour and other key climate parameters in order to reduce uncertainty in models and improve advance planning. Another limitation is a major gap in ground-level climate information in low-income countries around the world, in particular in Africa. Filling the persisting ground-level data gaps via the widespread installation of meteorological/hydrological monitoring equipment, in particular in Africa, would be a crucial contribution to enhancing the bases of climate information.
ADAPTATION PERFORMANCE REVIEW
POLICY EVALUATION
Currently no adequate theory exists that allows us to effectively measure the success of policy-making and adaptation efforts.

EVIDENCE BASE
The evidence base for the effectiveness of a number of key adaptive measures is very limited, and not all adaptive measures presently have cost-benefit or cost-effectiveness measures.

MONETARY AND NON-MONETARY VALUE
Greater emphasis could be given to both the monetary and the non-monetary value of adaptation policies and/or characteristics of adaptive capacity/resilience of communities, including social safety nets, community support networks, and other societal resources that improve the ability of populations to cope with shocks and changes in the climate.

BACKGROUND
An analytical undertaking such as the one conducted here, based on primary research sources and climate models, is by necessity limited by the underlying data and research. Furthermore, the Climate Vulnerability Monitor is also dependent on climate models such as the FUND model and the DIVA model. A disciplined effort has gone into ensuring that the best available research and data have been used and that only the most respected climate scientists have been referenced. The aim is to continuously improve the Monitor to make it ever more relevant to policy-makers in the context of evolving understanding of the impact of climate change on human society.
ACKNOWLEDGMENTS

ROSS MOUNTAIN,
DIRECTOR GENERAL OF DARA

I would like to express my sincere thanks on behalf of DARA and its Board of Trustees, in particular to the many experts and concerned individuals without whose personal engagement amid extremely busy schedules this important project would not have been brought to fruition in 2010.

The Climate Vulnerability Monitor has been developed as a core part of the Climate Vulnerability Initiative partnership between DARA and the Climate Vulnerable Forum through its founder, the Republic of the Maldives. President Mohamed Nasheed founded the Climate Vulnerable Forum in 2009 to highlight the urgent concerns and hopes of the most vulnerable communities around the world. The support provided by the Maldives has been key in providing focus guidance and in engaging many important stakeholders in the development of the Monitor. Our warm thanks go to the Maldives Ministries of Foreign Affairs and of the Environment and to the Office of the President. Special thanks go to Minister Ahmed Shaheed, Minister of State Ahmed Naseem, Aminath Shauna, Paul Roberts, Deputy Minister Hawla Didi, Iruthisham Adam, Abdul Ghafoor Mohamed, Thilmeeza Hussain, Ahmed Shaan, Amin Javed Faizal, Rose Richter, Fathimath Inaya, and Mariyam Midhfa Naeem. We are also most grateful to President Anote Tong of Kiribati and Foreign Secretary Tessie Lambourne, as well as to Foreign Secretary Mohamed Quayes, Mohammad Khastagir, Tareq Ahmed, and Fahima Murshid Kazi of Bangladesh.

Other members of the Climate Vulnerable Forum endorsed and encouraged this effort at their high-level meeting in New York on 19 September 2010, where it was decided the report should serve as a reference for advocacy and promoting policy development in the area of climate vulnerability. Attendees to the September meeting included senior representatives of Antigua and Barbuda, Bangladesh, Costa Rica, Kiribati, Grenada, Maldives, Marshall Islands, Nepal, Philippines, St. Lucia, Solomon Islands, Timor-Leste, and Samoa, who joined earlier signatories to the 2009 Climate Vulnerable Forum Declaration -- Barbados, Bhutan, Ghana, Kenya, Maldives, Rwanda, Tanzania, and Vietnam.

The guidance and insight provided by the Advisory Panel was invaluable. Its members, Mary Chinery-Hesse, Helen Clark, Jan Eliasson, José Maria Figueres Olsen, Saleemul Huq, Yolanda Kakabadse, Ashok Khosla, Ricardo Lagos, Loren Legarda, Ahmed Naseem, Rajendra Pachauri, Teresa Ribera, Johan Rockström, Hans Joachim Schellnhuber, Barbara Stocking, Klaus Töpfer, Margareta Wahlström, and Michael Zammit Cutajar, generously contributed ideas and insights to the report.

In a field of expertise with still many uncertainties, the Peer Review Committee worked to ensure that the data presented in this document is based on a solid methodology. The detailed and prompt feedback received was indispensible for the robustness of the analysis achieved, and we are indebted to its members: Yasemin Aysan, Suruchi Bhadwal, Manuel Carballo, Diarmid Campbell-Lendrum, Ian Christoplos, Pierre Encontre, Anne Hammill, Juergen Kropp, Marc Levy, Bo Lim, Urs Luterbacher, Pascal Peduzzi, Hansjoerg Strohmeyer, and Farhana Yamin.

I would like to also thank Former UN Secretary-General Kofi Annan whose visionary leadership, as always, paved the way for this report by firmly establishing the fundamental importance of the human dimensions of climate change. We also acknowledge the inspiration provided by the work of Walter Fust and the teams at the Global Humanitarian Forum and Dalberg, which produced The Anatomy of A Silent Crisis (Global Humanitarian Forum, 2009).

My warm thanks also go to Mary Robinson, David Bassion, Magda Ninaber, Otto Baumrucker, Alain Dick, Robin Gwynn, Ben Llewellyn-Jones, Adam Sambrook, Nicola Righini, Kelly Rigg, Maria Elena Agüero, Matthew Hodes, Luciana Silvestri, Emina Skroeder, Pierre Conille, Andrew Cox, Mohamed Inaz, Robin Shelley, Mark Lynas, Veerle Vanderweed, Jennifer Baumwell, Tim Scott, David Del Conte, Cristina Alfrez, Olivia Serdezcny, John Matthews, A.J. Wickel, Randolph Kent, Emma Visman, Youssef Nassief, Annett Moehner, and IJ Partners, all of whom gave generous assistance to the team in pulling together this endeavour.

Mo Marshall, our copy editor, Mariano Sarmieto, lead designer, and the team at Apex Communications, including Pete Bowyer, James Drewer, and Carlo Gibbs, and our printer APGISA Aplicaciones Gráficas e Informáticas S.A., contributed creatively to bringing the messages of this report to wider audiences.

Particular thanks is also owed to the following groups.

Data Providers:
- World Health Organization (WHO)
- Centre for Research on the Epidemiology of Disasters (CRED) Emergency Events Database (EM-DAT)
- GermanWatch / MunichRe NatCatSERVICE
- Population, Landscape, and Climate Estimates (PLACE-II) / Center for International Earth Science Information Network (CIESIN) of Columbia University
- Dynamic and Interactive Vulnerability Assessment (DIVA) of the Potsdam Institute for Climate Impact Research (PIK)
- Climate Framework for Uncertainty, Negotiation and Distribution (FUND) model of Richard S. Tol and David Anthoff
- World Resources Institute (WRI) Database, Fisheries Exports
- World Bank 2008 for Gross Domestic Product (Purchasing Power Parity)

The report would not have been possible without the analytical expertise and dedicated work of Commons Consultants, the main research and production partner of DARA in this effort, a team led by Søren Peter Andreasen and including Jakob Mathias Wichmann, Peter Utzon Berg, Anne-Mette Steinmeier and Andreas Clemmensen and which was responsible in particular for developing the quantitative foundations of the report and contributing to its research base and substantive content.

DARA’s role as developer of the report whereby it alone carries the ultimate responsibility for the content of the document was carried out together with Steering Group Co-Chair Marc Limon of the Maldives Mission in Geneva, who has my many thanks. Responsibility for the editorial content of the Monitor has been skilfully exercised by Matthew McKinnon, who is also Coordinator of the overall Climate Vulnerability Initiative. Lucía Fernández was also instrumental in bringing the project to fruition. Other DARA staff members involved at different stages were Belén Camacho, Belén Díaz, Fiona Guy, Daniela Mamone, Rebecca Moy, Amalia Navarro, Riccardo Polastro, Soledad Posada, Daniela Ruegenberg, Nicolai Steen, Philip Tamminga, Geeta Uhl, Susana Vicario, and Nacho Wilhelmi.

This report could not have been realized without the generous support of DARA’s President Diego Hidalgo and the enthusiastic engagement of DARA Trustee José María Figueres as well as the wholehearted support of the other members of DARA’s Board of Trustees, Aldo Ajello, Emma Bonino, Jan Eliasson, Beatriz Iraburu, Juliet Pierce, and José Manuel Romero.
The Climate Vulnerability Monitor benefits from the collaboration of its two lead partners, DARA and the Climate Vulnerable Forum at the core of the Climate Vulnerability Initiative. DARA brings specialist expertise and independent objectivity to the endeavour, building on its experience as a critical evaluator of development and humanitarian aid effectiveness. The Climate Vulnerable Forum and its members, particularly its initiating chair (the Maldives), have contributed prescient thought leadership to the project, as well as expertise from inside the climate frontlines.

DARA

DARA is an independent international organization committed to improving the quality and effectiveness of aid for vulnerable populations suffering from conflict, disasters, and climate change. It carries out this mandate through research, evaluations, and knowledge sharing. DARA was founded with the compelling vision of Silvia Hidalgo to enhance the impact of international assistance for the benefit of the most vulnerable of the world’s groups. DARA created the Humanitarian Response Index, which is the premier evaluation tool for donor effectiveness in humanitarian assistance.

CLIMATE VULNERABLE FORUM

The Climate Vulnerable Forum convenes governments from Africa, Asia, the Americas, and the Pacific, representing some of the countries most vulnerable to the adverse impacts of climate change. The Forum first convened in the Maldives in November 2009 and adopted a declaration that expressed alarm at the pace of change to the Earth caused by climate change and committed to demonstrating leadership aimed at tackling what for some nations is becoming an existential challenge. The Climate Vulnerable Forum brings to the Monitor its strategic leadership engagement and facilitates access to key expertise.

COMMONS CONSULTANTS

Commons Consultants are the principal research and production partner of the Climate Vulnerability Initiative involved in the development of the Monitor. Commons Consultants is a management consulting and research firm with expertise in policy analysis and strategy development. Its focus industries are energy and environment, climate change, health, and responsible financial services.
DECLARATION OF THE CLIMATE VULNERABLE FORUM

We, Heads of State, Ministers and representatives of Government from Africa, Asia, Caribbean and the Pacific, representing some of the countries most vulnerable to the adverse impacts of climate change:

Alarmed at the pace of change to our Earth caused by human-induced climate change, including accelerating melting and loss of ice from Antarctica, Greenland, the Himalayas, Mount Kilimanjaro and Mount Kenya, acidification of the world’s oceans due to rising CO2 concentrations, increasingly intense tropical cyclones, more damaging and intense drought and floods, including Glacial Lakes Outburst Floods, in many regions and higher levels of sea-level rise than estimated just a few years ago, risks changing the face of the planet and threatening coastal cities, low lying areas, mountainous regions and vulnerable countries the world over;

Asserting that anthropogenic climate change poses an existential threat to our nations, our cultures and to our way of life, and thereby undermines the internationally-protected human rights of our people – including the right to sustainable development, right to life, the right to self-determination and the right of a people not to be deprived of its own means of subsistence, as well as principles of international law that oblige all states to ensure that activities within their jurisdiction or control do not cause damage to the environment of other States or of areas beyond the limits of national jurisdiction;

Conscious that while our nations lie at the climate front-line and will disproportionately feel the impacts of global warming, in the end climate change will threaten the sustainable development and, ultimately, the survival of all States and peoples – the fate of the most vulnerable will be the fate of the world; and convinced that our acute vulnerability not only allows us to perceive the threat of climate change more clearly than others, but also provides us with the clarity of vision to understand the steps that must be taken to protect the Earth’s climate system and the determination to see the job done;

Recalling that the UNFCCC is the primary international, intergovernmental forum for negotiating the global response to climate change; Desirous of building upon the commitment of leaders at the recent United Nations High-Level Summit on Climate Change in New York in addressing the needs of those countries most vulnerable to the impacts of climate change as well as other political commitments, including the AOSIS Declaration and the African Common Position;

Underlining the urgency of concluding an ambitious, fair and effective global legal agreement at COP15 in Copenhagen;

Gravely concerned at reports of a downgrading of expectations for COP15 and calling therefore for a redoubling of efforts – including through the attendance in Copenhagen, at Head of State- or Head of Government-level, of all States, and especially of major industrialised nations and all major emerging economies;

Emphasising that developed countries bear the overwhelming historic responsibility for causing anthropogenic climate change and must therefore take the lead in responding to the challenge across all four building blocks of an enhanced international climate change regime – namely mitigation, adaption, technology and finance – that builds-upon the UNFCCC and its Kyoto Protocol;

Taking account of their historic responsibility as well as the need to secure climate justice for the world’s poorest and most vulnerable communities, developed countries must commit to legally-binding and ambitious emission reduction targets consistent with limiting global average surface warming to well below 1.5 degrees Celsius above pre-industrial levels and long-term stabilisation of atmospheric greenhouse gas concentrations at well below 350ppm, and that to achieve this the agreement at COP15 UNFCCC should include a goal of peaking global emissions by 2015 with a sharp decline thereafter towards a global reduction of 85% by 2050;

Emphasising that protecting the climate system is the common responsibility of all humankind, that the Earth’s climate system has a limited capacity to absorb greenhouse gas emissions, and that action is required by all countries on the basis of common but differentiated responsibilities, respective capabilities, and the precautionary principle; Underscoring that maintaining carbon-intensive
modes of production established in 19th Century Europe will incur enormous social and economic cost in the medium- and long-term, whereas shifting to a carbon-neutral future based on green technology and low-carbon energy creates wealth, jobs, new economic opportunities, and local co-benefits in terms of health and reduced pollution;

Convinced that those countries which take the lead in embracing this future will be the winners of the 21st Century;

Expressing our determination, as vulnerable States, to demonstrate leadership on climate change by leading the world into the low-carbon and ultimately carbon-neutral economy, but recognising that we cannot achieve this goal on our own;

Now therefore,

Declare our determination, as low-emitting countries that are acutely vulnerable to climate change, to show moral leadership on climate change through actions as well as words, by acting now to commence greening our economies as our contribution towards achieving carbon neutrality,

Affirm that this will enhance the objectives of achieving sustainable development, reducing poverty and attaining the internationally agreed development goals including the Millennium Development Goals,

Call upon all other countries to follow the moral leadership shown by the Republic of Maldives by voluntarily committing to achieving carbon-neutrality,

Assert that the achievement of carbon neutrality by developing countries will be extremely difficult given their lack of resources and capacity and pressing adaptation challenges, without external financial, technological and capability-building support from developed countries,

Declare that, irrespective of the effectiveness of mitigation actions, significant adverse changes in the global climate are now inevitable and are already taking place, and thus Parties to the UNFCCC must also include, in the COP15 outcome document, an ambitious agreement on adaptation finance which should prioritise the needs of the most vulnerable countries, especially in the near-term,

Call upon developed countries to provide public money amounting to at least 1.5% of their gross domestic product, in addition to innovative sources of finance, annually by 2015 to assist developing countries make their transition to a climate resilient low-carbon economy. This grant-based finance must be predictable, sustainable, transparent, new and additional – on top of developed country commitments to deliver 0.7% of their Gross National Income as Overseas Development Assistance,

Underline that financing for mitigation and adaptation, under the authority of the Conference of Parties to the UNFCCC, should be on the basis of direct access to implement country-led national Low-Carbon Development Plans and Climate Resilient Development Strategies, and the process to allocate and deliver the finance must be accessible, transparent, consensual, accountable, results-orientated and should prioritise the needs of the most vulnerable countries,

Further underline that fundamental principles and issues relating to the survival of peoples and preservation of sovereign rights are non-negotiable, and should be embedded in the Copenhagen legal agreement,

Call on Parties to the UNFCCC to also consider and address the health, human rights and security implications of climate change, including the need to prepare communities for relocation, to protect persons displaced across borders due to climate change-related impacts, and the need to create a legal framework to protect the human rights of those left stateless as a result of climate change,

Invite other vulnerable countries to endorse this Declaration,

Decide to hold a second meeting of the Climate Vulnerable Forum in Kiribati in 2010 to take forward this initiative, to further raise awareness of the vulnerabilities and actions of vulnerable countries to combat climate change, and to amplify their voice in international negotiations. In this context, request support from the UN system to assist the most vulnerable developing countries take action in pursuit of this Declaration.

Adopted in Male’, Maldives, 10th November 2009

Bangladesh, Barbados, Bhutan, Ghana, Kenya, Kiribati, Maldives, Nepal, Rwanda, Tanzania, Vietnam
A girl attempting to fill containers with trickling water from a tap near an artesian well outside Yemen’s capital, Sanaa. Source: Adel Yahya/IRIN.
GLOSSARY

ADAPTATION
In this report, adaptation refers to individual or governmental actions to reduce adverse effects or future risks associated with climate change. The IPCC/UNFCCC defines adaptation as the “adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities.”

ADAPTATION PERFORMANCE REVIEW
Rating system of adaptive effectiveness that assesses measures known to be effective to a specific degree in limiting the impact on vulnerable populations as identified in the Climate Vulnerability Monitor/Index section of the report.

ADAPTIVE CAPACITY
The ability of a system to adjust to climate change, variability and extremes to moderate potential damages, to take advantage of opportunities, or to cope with the consequences.

AFFECTED COMMUNITIES
Communities that have seen their livelihoods compromised temporarily or permanently by climate change.

CLIMATE DISPLACED PEOPLE
Persons displaced temporarily or permanently due to climate change and its impacts or shocks, notably land desertification, sea-level rise and weather-related disasters. It is almost never possible to identify an individual as exclusively a climate displaced person due to the range of factors that are likely involved in forced or voluntary movement of people. Climate change, however, is still likely to generate additional numbers of migrants and displaced people.

CLIMATE EFFECT
Indicates the relative effects of climate change on social and economic variables at the country level. Climate effect (CE) is calculated based on observed values of social and economic variables and the effects of climate change.

CLIMATE IMPACT FACTOR
The relative contribution of climate change to the development of a given variable.

CLIMATE VULNERABILITY FACTOR
The aggregate vulnerability factor is determined as an evenly weighted sum of the independent vulnerability factors across the various impact areas. It indicates the extent to which countries are affected by multiple stresses.

CLIMATE VULNERABILITY MONITOR
The Climate Vulnerability Monitor provides a global overview of vulnerability to climate change. It provides fair estimates of the types of impacts we are already facing. It also shows where the impacts are taking place and captures our evolving global vulnerability to climate change.

COST-EFFECTIVENESS
Refers to the relationship between the economic input/cost of a given adaptation measure and the degree of beneficial output.

DEVELOPMENT AID
Aid to support the economic, social, and political development of developing countries. The aim is to alleviate poverty in the long run.

DISABILITY-ADJUSTED LIFE YEAR
This time-based measure combines years of life lost due to premature death and years of life lost due to time lived in states of less than full health. The DALY metric was developed in the original Global Burden of Disease 1990 study to assess the burden of disease consistently across diseases, risk factors, and regions.

DISASTER RISK REDUCTION
A framework for assessing various measures for minimizing vulnerabilities and disaster risks throughout a society, to avert (prevention) or limit (mitigation and preparedness) the adverse impacts of hazards within the broad context of sustainable development.
ECONOMIC STRESS
The economic stress due to climate change captured in this report is based on fisheries, forestry, and other agricultural losses or gains. It is, to a great extent, driven by water resource impacts and climate effects on biodiversity.

EXPOSURE TO CLIMATE CHANGE
Exposure to physical manifestations of alterations in weather conditions and the environment as a result of climate change. See also “Vulnerability - Physical vulnerability to climate change”.

FOOD SECURITY
Refers to the availability of food and people’s access to it. A household is food secure when its occupants do not live in hunger or fear of starvation.

HABITAT LOSS
Refers to the loss of human habitats due to climate change impacts.

HEALTH IMPACT
The impacts of climate change that have an effect (positive or negative) on human health.

HUMANITARIAN ASSISTANCE
Material or logistical assistance provided for humanitarian purposes, typically in response to a humanitarian crisis. The aim is to alleviate suffering in the short term.

MITIGATION
Actions taken to lower greenhouse gas emissions targeted at reducing the extent of global warming. This is distinct from adaptation, which involves taking action to minimize the effects of global warming.

RESILIENCE
The ability of a community or ecosystem to recover from, return to equilibrium, or bounce back following a shock.

SOCIO-ECONOMIC IMPACT
Refers to climate change impacts of both social and economic character.

VULNERABILITY
The degree to which a community experiences danger and harm from the negative effects of climate change. Or: The degree to which a system (community, ecosystem, economy) is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate variation to which a system is exposed, its sensitivity, and its adaptive capacity (IPCC definition).

VULNERABILITY - PHYSICAL VULNERABILITY TO CLIMATE CHANGE
Refers to people who live in regions that are prone to more than one type of physical manifestation of climate change: floods, storms, droughts, sea-level rise, etc. (similar to “exposure”).

VULNERABILITY - SOCIO-ECONOMIC VULNERABILITY TO CLIMATE CHANGE
Refers to the capacity of individuals, communities, ecosystems, economies, and societies to adapt to climate change impacts and avoid suffering from long-term, potentially irreversible, losses in well-being and stability. Also referred to as “underlying vulnerabilities”.

WEATHER-RELATED DISASTERS
Natural disasters that are related to weather patterns, such as floods, droughts, and heat waves. Geophysical disasters such as earthquakes are not included in this category.
ABBREVIATIONS

CE: Climate effect
CIF: Climate impact factor
CO$_2$: Carbon dioxide
DALY: Disability-adjusted life year
DCPP: Disease Control Priorities Project
DIVA: Dynamic Interactive Vulnerability Assessment
ECA: [Working Group] Economics of Climate Adaptation Working Group
FAO: Food and Agriculture Organization
GDP: Gross domestic product
GEF: Global Environment Facility
GNP: Gross national product
GTZ: Deutsche Gesellschaft für Technische Zusammenarbeit
IFRC: The International Federation of Red Cross and Red Crescent Societies
IPCC: Intergovernmental Panel on Climate Change
MAD: Mean absolute deviation
MDGs: Millennium Development Goals
NAPA: National Adaptation Programme for Action
ORT: Oral rehydration therapy
PPP: Purchasing power parity
UNCCD: United Nations Convention to Combat Desertification
UNDP: United Nations Development Programme
UNEP: United Nations Environment Programme
UNESCO: United Nations Educational, Scientific and Cultural Organization
UNFCCC: United Nations Framework Convention on Climate Change
UNICEF: United Nations Children’s Fund
UNISDR: United Nations International Strategy for Disaster Reduction
WHO: World Health Organization
REFERENCES

1. Indoor smoke from solid fuels, urban air pollution and airborne particulates as risk factors for mortality accounted for approximately 2.7 million deaths worldwide in 2000. Source: WHO (2002)
2. IPCC (2007); Richardson et al (2009)
5. Richardson et al (2009)
6. Ibid.
7. The prevailing scientific definition of vulnerability to climate change is summarized in the text. The full meaning is as follows: "The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate variation to which a system is exposed, its sensitivity, and its adaptive capacity" IPCC (2001)
8. The UNFCCC definition of adaptation is as follows: "Adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities." UNFCCC (2010)
10. IPCC (2007)
11. Ibid.
12. The Monitor uses mean absolute standard deviations as its distribution convention.
15. UNDP (2007)
16. UNDP (2010)
17. WHO (2009)
18. UNDP (2008)
20. Ibid
22. McMichael et al. (2006); Reacher et al. (2004)
23. Woodward et al. (2000); McMichael et al. (2006); Goklany (2009); Costello et al. (2009)
24. DCPP (2006)
25. McMichael et al. (2006)
27. WHO (2010)
28. Ibid.
29. Ibid.
31. CDC (2010)
32. IFRC (2004) and Robine et al. (2008)
33. IPCC (2007)
34. Jetten et al. (1997)
35. Jetten et al. (1997)
36. Rogers et al. (2000); World Bank (2010)
37. McMichael et al. (2006)
38. WHO (2009)
41. WHO (2009)
42. Lipp et al. (2002)
43. WHO (2009); Woodward et al. (2000); IPCC (2007)
44. de Onis et al. (2004)
45. IPCC (2007); IFPRI (2009a); USDA (2008); Garnaut (2008)
46. LDCF/NAPA (2007-2009)
47. Cheung et al. (2010); McMichael et al. (2006)
48. IFPRI (2009a)
50. DCPP (2006)
51. UNDP (2009)
52. McMichael et al. (2006); WHO (2004)
53. DCPP (2006)
54. Ibid.
55. UNEP (2002)
56. WHO (2002)
58. Waithaka et al. (2010)
60. Ibid.
62. Ibid.
63. IPCC (2007)
64. CRED (2010)
65. Cheung et al. (2010)
66. Emanuel (2005)
67. WHO (2010)
68. Ibid
69. Ibid.
70. Ibid.
71. Ibid.
72. Ibid.
73. Ibid.
74. Ibid.
75. Ibid.
76. Washington Post (2010)
77. IPCC (2007)
78. Ibid.
79. Cheung et al. (2010)
80. IFRC (2004)
81. Knutson et al. (2010)
82. IPCC (2007)
84. NASA (2002)
86. ECA Working Group (2009)
87. IRIN (2010)
88. ECA Working Group (2009)
89. UNEP (2002)
90. CRED (2010)
91. World Bank (2008)
92. UN (2009b)
94. Ibid.
95. CRED (2010)
96. Ibid.
98. Ibid.
99. IFRC (2008)
100. IMF (2009); CRED (2010)
101. CRED (2010); IFRC (2008)
102. IFRC (2009)
104. IPCC (2007)
105. CRED (2010); IMF (2010)
106. Ibid.
107. Ibid.
109. Earth Trends WRI (2010); World Resources Institute (2005)
110. McGranahan et al. (2007)
111. Cazenave & Llovel (2010)
112. Millennium Ecosystem Assessment (2005)
113. World Resources Institute (2005)
114. IPCC (2007)
115. Millennium Ecosystem Assessment (2005), chap. 22
117. Scienceray.
119. ENN (1999)
120. Disaster News Network (2008)
121. OCHA (2008)
122. BBC (2010)
123. Bangkok Post (2010)
125. NASA Climate (2010)
127. Ibid.
128. Cazenave et al. (2008)
129. World Resources Institute (2005)
130. McGranahan et al. (2007)
131. DIVA (2003a)
132. WMO (2010); FAO (2010)
133. NCDC NOAA (2009)
134. IPCC (2004)
137. UNFCCC (2009)
138. Welker (2009)
139. UNFCCC (2009)
140. World Resources Institute (2005)
141. World Bank (2009)
142. PLACE (2010)
143. Toth et al. (2005)
144. DIVA (2003a)
145. CIA Factbook (2010)
146. CIA Factbook (2010); McGranahan et al. (2007)
147. Ibid.
148. IPCC (2007)
149. Ibid.
150. WHO (2010)
151. Ibid.
152. Ibid.
153. Ibid.
154. Ibid.
155. Ibid.
156. Rapp (2009)
157. IPCC (2007)
158. Hoegh-Guldberg et al. (2007)
159. Millennium Ecosystems Assessment (2005)
160. IPCC (2007)
161. IFPRI (2010); IPCC WGII (2007)
162. IPCC (2008); IPCC (2007)
163. IPCC WG II (2007); Cheung et al. (2010)
165. Tol (2002)
166. IPCC (2007)
167. Watkiss et al. (2005)
168. Easterling et al. (2007)
169. Environmental Protection Agency (2010)
170. Backlund et al. (2008)
171. Easterling et al. (2007)
172. Ibid.; IPCC (2007)
173. Parry et al. (2008)
174. IPCC (2001)
175. Sukhdev et al. (2008)
176. Easterling et al. (2007); Garnaut (2008)
177. Bogataj (2009)
178. EPA (2009)
180. Ash et al. (2008)
181. Cheung et al. (2010)
182. FAO (2010)
183. IPCC WG II (2007)
184. UNEP (2010)
185. Tierney et al. (2008)
186. Easterling et al. (2007)
187. IPCC WGII (2007); Cheung et al. (2010)
188. Sachs (2001)
189. WHO (2002)
190. Nelson et al. (2009)
191. Nelson et al. (2009)
192. OCHA (2010)
194. UNEP (2010)
Category F5 tornado viewed from the southeast as it approached Elie, Manitoba. Source: Wikimedia Commons/Justin Hobson.
Adam & Goldenburg (2010)
David Adam & Suzanne Goldenberg (2010, February 10)
How to reform the IPCC
Guardian.co.uk
http://www.guardian.co.uk/environment/2010/feb/10/ipcc-reform

ADAPT
ADAPT Screening Tool
Climate Change Data Portal
World Bank
http://sdwebx.worldbank.org/climateportal

ADB (2002)
Handbook for Integrating Risk Analysis in the Economic Analysis of Projects
Manila, Philippines: Asian Development Bank

Adger et. al (2007)
Assessment of adaptation practices, options, constraints and capacity
IPCC
Cambridge, UK: Cambridge University Press

Altez (2007)
R. Altez (2007)
Cuadernos de Medicina Forense, vol. 13, numero 50, pp. 243-253

Ash et al. (2008)
Biodiversity. In: Environment for Development. Global Environment Outlook 4 (GEO 4) (chap. 5)

Asian Disaster Preparedness Center (2003)
Asian Disaster Preparedness Center(2003)

Australian Academy of Sciences et al. (2001)
The Royal Society
Backlund et al. (2008)
Peter Backlund, Anthony Janetos, and David Schimel (2008)
The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States - Final Report, Synthesis and Assessment Product 4.3
Climate Change Science Program and the Subcommittee on Global Change Research
Washington D.C., U.S. Department of Agriculture (USDA)

Barnes et al. (2004)
What Makes People Cook with Improved Biomass Stoves? A Comparative International Review of Stove Programs
Washington D.C., US: World Bank

Beltrán & Koo-Oshima (2004)
Water desalination for agricultural applications
Land and Water Discussion Paper, no. 5.
Rome, Italy: FAO (Food and Agriculture Organization of the United Nations)

Bentham et al. (1995)
Climate change and the incidence of food poisoning in England and Wales

Biello (2007)
David Biello (2007)
Conservative Climate: Consensus document may understate the climate change problem
Scientific American, April Issue

Bogač (2009)
Lučka Kajfež Bogataj (2009)
How will the Alps respond to Climate Change? Scenarios for the future of Alpine Water
Innsbruck, Austria: Innsbruck University Press

Bouwer (2010)
Laurens M. Bouwer (2010)
Have disaster losses increased due to anthropogenic climate change?
Bulletin of the American Meteorological Society, preliminary accepted version (doi: 10.1175/2010BAMS3092.1)

Boykoff and Boykoff (2004)
Balance as bias: Global warming and the US prestige press

Sophie Arie (2002)
Malnutrition spreads in Argentina
British Medical Journal, vol. 325(7375), p.1261
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1169910/

Brooks et al. (2005)
The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation

Campell-Lendrum et al. (2010)
Diarmid Campbell-Lendrum, Roberto Bertollini (2010)
Science, media and public perception: implications for climate and health policies
Bull World Health Organ, vol. 88, pp. 242
CARNegie (2009)
Carnegie Institution for Science (2009, 11 March)
Retrieved November 2010:
http://carnegiescience.edu/news/coral_reefs_may_start_dissolving_when_atmospheric_co2_doubles

Caspari & Pokhrel (2008)
Moench, M., Caspari, E. & A. Pokhrel (eds.) (2008)
From Risk to Resilience - Evaluating Costs and Benefits of Flood Reduction under Changing Climatic Conditions: Case of the Rohini River Basin, India
Provention Consortium Working Paper, no. 4

Cazenave & Llovel (2010)
Anny Cazenave and William Llovel (2010)
Contemporary Sea-level Rise
Sea-level budget over 2003-2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo.

CDC (2010)
Centers for Disease Control and Prevention (2010)
The Healthy People 2010 Database

CGIAR (2009)
Alliance of the CGIAR Centers (December 2009)
Climate, Agriculture and Food Security: A Strategy for Change
Retrieved September 2010:

CGIAR (2010)
CGIAR (2010)
Research & Impact: CGIAR on Global Issues - CGIAR and Desertification Retrieved September 2010:
http://www.cgiar.org/impact/global/desertification_factsheet_index.html

Chan & Baba, (2009)
Chan, H.T. & Baba, S. (2009)
Manual on Guidelines for Rehabilitation of Coastal Forests damaged by Natural Hazards in the Asia-Pacific Region
International Society for Mangrove Ecosystems (ISME) & International Tropical Timber Organization (ITTO)

Chang et al. (2010)

Cheung et al. (2010)
Large-Scale Redistribution of Maximum Fisheries Catch Potential in the Global Ocean under Climate
Global Change Biology, vol. 16, issue 1, pp. 24-35
Ci:Grasp
Potsdam Institute for Climate Impact Research
http://cigrasp.pik-potsdam.de/

CIA Climate Factbook
CIA
Climate Factbook
Retrieved August-October 2010:

Cicerone et al. (2001)
Cicerone, R., et al. (2001)
Climate Change Science: an Analysis of Some Key Questions
Proceedings of the Committee on the Science of Climate Change, Division on Earth
and Life Studies, National Research Council.

Costello et al. (2009)
A. Costello, A. Abbas, M. A. Allen et al. (2009)
Managing the health effects of climate change
Lancet, vol. 373, pp. 1693-1733

CRED (2010)
Center for Research of the Epidemiology of Disasters (CRED)
(2010)
EM DAT - The International Disasters Database

Dahal (2006)
Mahesh Raj Dahal (2006)
Benefit-Cost Analysis of Community Forest and Its Distributional Impact on Rural Poor

DCPP
World Bank
Disease Control Priorities Project and Global Burden of Disease and Risk Factors:
Cost-Effective Interventions (Database)
http://www.dcp2.org/page/main/BrowseInterventions.html

DCPP (2006)
World Bank (2006)
Disease Control Priorities in Developing Countries (2nd edition).
New York: Oxford University Press
Washington D.C., US: World Bank

de Fraiture & Molden (2010)
de Fraiture, Charlotte; Molden, David; Wichelns, Dennis (2010)
Investing in water for food, ecosystems, and livelihoods: an overview of the
comprehensive assessment of water management in agriculture
(Special issue with contributions by IWMI authors),
Retrieved September 2010: http://dx.doi.org/10.1016/j.agwat.2009.08.015

de Onis et al. (2004)
Methodology for estimating regional and global trends of child malnutrition

DIVA (2003a)
DIVA: System properties type
DMI (2010)
Danish Meteorological Institute (DMI) (2010)
http://www.dmi.dk/dmi/index/

Dominican Today (2009)
Dominican Today (2009, 19 June)
Desertiﬁcation affects around 5 million Dominicans
Retrieved November 2010:

Doran & Zimmerman (2009)
Peter T. Doran and Maggie Kendall Zimmerman (2009)
Examining the Scientiﬁc Consensus on Climate Change
Chicago: University of Illinois at Chicago (UIC)
Retrieved October 2010:
http://tigger.uic.edu/~pdoran/012009_Doran_final.pdf

Duffy (2010)
Niev Duffy (2010)
The Potential Economic Beneﬁts of Riparian Buffers

Duran, Gutierrez, and Keskinocak (2010)
Serhan Duran, Marco A. Gutierrez and Pınar Keskinocak (2010)
Pre-positioning of Emergency Items Worldwide for CARE International
INFORMS Inventory Paper
Retrieved October 2010:
http://www.scl.gatech.edu/research/humanitarian/files/
CAREPrepositioningofInventorypaper.pdf

Earth Trends WRI (2010)
World Resources Institute (2010)
Earth Trends - The Environmental Information portal
Retrieved August-October 2010:
http://earthtrends.wri.org/searchable_db/index.php?theme=1&variable_ID=41&action=select_countries

Easterling et al. (2007)
IPCC
Cambridge, UK: Cambridge University Press

Ebi et al. (2004)
American Meteorological Society, vol. 85, issue 8, pp. 1067-1073

ECA Working Group (2009)
Economics of Climate Adaptation (ECA) Working Group (2009)
Shaping Climate-resilient Development: A framework for decision-making

Elsner et al. (2008)
The increasing intensity of the strongest tropical cyclones
Nature, vol. 455, pp. 92-95
Emanuel (2005)
K. Emanuel (2005)
Increasing destructiveness of tropical cyclones over the past 30 years.

ENDA (2008)
Dakar, Senegal: ENDA Third World/Executive Secretariat
http://www.enda.sn/ENDA\%20IN\%202007\%20\%20ANNUAL\%20REPORT\%20-%20THE\%20CHALLENGE\%20OF\%20RENEWAL.pdf

Environment News Service (2009)
Environment News Service (2009. 8 December)
2009 Global Temperature Fifth Warmest on Record
Retrieved October 2010:

Environmental Protection Agency (2010)
Environmental Protection Agency (2010)
Various resources
Retrieved September-October 2010:
http://www.epa.gov/climatechange/effects/agriculture.html

FAO (2010)
FAO (2010)
Adaptation to climate change in agriculture, forestry and fisheries
Rome, Italy: Food and Agriculture Organization of the United Nations (FAO), United Nations

FEMA (2009)
FEMA (2009, 16 September)
FEMA Grant Of $2.2 Million To Georgetown Will Reduce Frequent Flooding Through Upgrading Drainage System
Retrieved October 2010:

Fisheries and Oceans Canada (2001)
Fisheries and Oceans Canada (2001)
Marine Guide to Preventing Shoreline Erosion.
Prepared by Habitat & Enhancement Branch, Pacific Region

FUND (2008)
FUND (2008)
The Climate Framework for Uncertainty, Negotiation and Distribution (FUND), Technical Description, Version 3.3
http://www.mi.uni-hamburg.de/FUND.5679.0.html

FUND (2009)
FUND (2009)
Fund2.8n model
Retrieved:
http://www.mi.uni-hamburg.de/FUND.5679.0.html

Füssel (2009)
Hans-Martin Füssel (2009)
Geneva, Switzerland: World Bank

Garnaut (2008)
Ross Garnaut (2008)
The Garnaut Climate Change Review Final Report
Cambridge, UK: Cambridge University Press
GEF (2004)
Rehabilitation of the Osanya Irrigation Canal and Water Reservoir for irrigation in Mande village
Global Environment Facility (GEF)

GEF (2010)
Maldives Integration of Climate Change Risks into the Safer Island Development Programme
Global Environment Facility (GEF)
http://www.thegef.org/gef/greenline/mar10/ldcf.html

GEF / UNDP (1997)
Solar Powered Water Desalination (Mauritius)
Global Environment Facility (GEF), United Nations Development Programme (UNDP), United Nations

GEF Kiribati Adaptation Project (2009)
Kiribati Adaptation Project-Implementation Phase (KAP-II) Restructuring of the Project (GEF Grant TF056267)
Washington D.C., US: Global Environment Facility (GEF)
Retrieved November 2010:
http://www.thegef.org/gef/sites/thegef.org/files/repository/Kiribati_06_16_09_Adaptation_Proj_Implementation_KAP_Il.pdf

GEF SGP Mauritius (2001)
Sustainable Agricultural Technologies for Rodrigues (Mauritius)
Global Environment Facility (GEF), United Nations Development Programme (UNDP), United Nations
http://sgp.undp.org/web/projects/4939/additional_request_for_funding_sustainable_agricultural_technologies_for_rodrigues.htm

GEF/NAPA Maldives (2007)
Maldives NAPA Project 2007
Global Environment Facility (GEF), United Nations Development Programme (UNDP), United Nations
http://gefonline.org/projectDetailsSQL.cfm?projID=2353

GEF/UNDP Pakistan (2007)
Raising Crops on Saline Soils with Saline Water (Pakistan)
Global Environment Facility (GEF), United Nations Development Programme (UNDP), United Nations
http://sgp.undp.org/web/projects/9935/raising_crops_on_saline_soils_with_saline_water.html

GERMAN WATCH (2010)
Global Climate Risk Index – Weather-related loss events and their impacts on countries in 2008 and in long-term comparison
Retrieved:
http://www.germanwatch.org/klima/cri.htm

Gething et al. (2010)
Climate change and the global malaria recession
Ghaffer (2006)
Ghaffer, Eman Abdel (2006)
Non-Conventional Water Resources Management
Cairo, Egypt: Environment and Climate Research Institute (ECRI), National Water Research Center

Gilman et al. (2006)
Pacific Island Mangroves in a Changing Climate and Rising Sea. Regional Seas Reports and Studies, No. 179
Nairobi, Kenya: United Nations Environment Programme (UNEP), United Nations

Glenn, Brown & O'Leary (1998)
Irrigating Crops with Seawater
Scientific American, August Issue

Global Humanitarian Forum (2009)
Global Humanitarian Forum (2009)
Human Impact Report: Climate Change - The Anatomy of A Silent Crisis
Geneva, Switzerland: Global Humanitarian Forum

Goklany (2009)
I.M Goklany (2009)

GTZ (2009)
Reliefweb/ German Technical Cooperation (GTZ) (2009, December 11)
Manual on Local Flood Early Warning Systems - Experiences from the Philippines Retrieved September 2010:

Hansen (2006)
Jim Hansen (2006, 19 October)
The Planet in Peril – Part I: Global warming, arctic ice melt and rising oceans will shrink nations and change world maps
YaleGlobalOnline

Hansen (2007)
James Hansen (2007)
Scientific reticence and sea-level rise
Environment Research Letters 2, April-June Retrieved October 2010:
http://iopscience.iop.org/1748-9326/2/2/024002/fulltext

Hansen et al (2005)
James Hansen, Larissa Nazarenko, Reto Ruedy, Makiko Sato, Josh Willis, Anthony Del Genio, Dorothy Koch, Andrew Lacis, Ken Lo, Surabi Menon, Tica Novakov, Judith Perlwitz, Gary Russell, Gavin A. Schmidt, Nicholas Tausnev (2005)

Heerden (2007)
Ivor Ll. van Heerden (2007)
The Failure of the New Orleans Levee System Following Hurricane Katrina and the Pathway Forward
Khazai et al. (2007)
Khazai, Bijan; Ingram, Jane C.; Saah, David S (2007)
The protective role of natural and engineered defence systems in coastal hazards
San Leandro, US: Spatial Informatics Group, LLC

Knutson et al. (2010)
Tropical cyclones and climate change

Kovats & Ebi (2006)
Kovats, R. San & Ebi, Kristie L (2006)
Heatwaves and public health in Europe
European Journal of Public Health, vol. 16, no. 6, pp. 592–599

Kron (2009)
W. Kron (2009)
Flood insurance: from clients to global financial markets
Journal of Flood Risk Management, vol 2, issue 1, pp.68-75

Lashof (1989)
Daniel A. Lashof (1989)
The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change

LDCF/NAPA (2007-2009)
LDCF/NAPA (2007-2009)
Integrating climate change risks into community-based livestock management in the Northwestern Lowlands of Eritrea
LDCF/UNDP Project
United Nations Development Programme, United Nations

Legget et al. (1992)
Emissions scenarios for IPCC: an update

Lewis III (2001)
Roy R. Lewis III (2001)
Mangrove Restoration: Costs and Benefits of Successful Ecological Restoration
Rome, Italy: Food and Agriculture Organization of the United Nations (FAO),United Nations

Lipp et al. (2002)
E. Lipp, A. Huq, R. Colwell (2002)
Effects of global climate on infectious disease: the cholera model

Martínez & Fernández (2008)
Rodrigo Martínez and Andrés Fernández (2008)
The cost of hunger: Social and economic impact of child undernutrition in Central America and the Dominican Republic (Project Document)
Economic Commission for Latin America and the Carribean (ECLAC), United Nations
World Food Programme
Santiago, Chile: United Nations

McGranahan et al. (2007)
Gordon McGranahan, Deborah Balk and Bridget Anderson (2007)
The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones
Environment and Urbanization, vol. 19, no. 1, pp. 17-37
McMichael et al. (2006)
Climate change and human health: present and future risks
Lancet, vol. 367, pp. 859–69

Millennium Ecosystem Assessment (2005)
Millennium Ecosystem Assessment (2005)
Millennium Assessment Report: Ecosystems and Human Well-Being
Washington D.C., US: World Resources Institute

Mirza (2003)
M. Monirul Qader Mirza (2003)
Climate Change and Extreme Weather Events: Can Developing Countries adapt?
Earth Scan
Climate Policy, vol. 3, no. 3, pp. 233-248(16)

Moberg et al. (2004)
A. Moberg, K. Wibjörn et al. (2004)
Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data
Nature, vol. 433, pp. 613-617

Mohal, Kahn & Rahman (2007)
Nasreen Mohal, Zahirul Haque Khan, Nazibur Rahman (2007)
Impact of Sea-level Rise on Coastal Rivers of Bangladesh
(Presented at the River Symposium 2006)
Institute of Water Modelling (IWM)

Moss et al. (2001)
Vulnerability to Climate Change: A Quantitative Approach
Research Report Prepared for the U.S. Department of Energy (September 2001)
Richland, US: Pacific Northwest National Laboratory

Munich Re (2010)
NatCatSERVICE/Munich Re (2010)
Statistics on natural catastrophes
natcatservice/default.aspx

NAPA, Bangladesh (2005)
Priority project no. 10
Promotion of research on drought, flood and saline tolerant varieties of crops

NAPA, Benin (2008)
Priority project no. 5 Protection of coastal areas against sea-level rise

NAPA, Bhutan (2006)
Priority project no. 6 Rainwater Harvesting

NAPA, Bhutan (2006)
Priority project no. 3 Weather Forecasting System to serve farmers and agriculture

NAPA, Bhutan (2006)
Priority project no. 7 GLOF Hazard Zoning (Pilot Scheme – Chamkhar Chu Basin)

NAPA, Burundi (2007)
Priority project no. 7 Popularisation of short cycle and drought resistant food crops
NAPA, Burundi (2007)
Priority project no. 9 Capacity building to promote energy-wood saving techniques

NAPA, Burundi (2007)
Priority project no. 2 Rehabilitation of Degraded Areas

NAPA, Cambodia (2007)
Priority project no 3G Rehabilitation of Coastal Protection Infrastructure

NAPA, Cambodia (2007)
Priority project 4 Community Based Agricultural Soil Conservation in Srae Ambel District, Koh Kong Province

NAPA, Cambodia
Priority project. No. 4b Community Mangrove Restoration and Sustainable Use of Natural Resource

NAPA, Cape Verde (2007)
Priority project no. 3 Integrated Protection and Management of Coastal Zones

NAPA, Djibuti (2006)
Priority project no. 7 Restoration of protected sites through the protection of coral reefs and mangrove vegetation

NAPA, Eritrea (2007)
Priority project no.3 Encourage Afforestation and Agroforestry through Community Forestry Initiative

NAPA, Eritrea (2007)
Priority project 4 Groundwater Recharge for Irrigation Wells

NAPA, Ethiopia (2008)
Priority project no. 5 Community based sustainable utilization and management of wetlands in selected parts of Ethiopia

NAPA, Gambia (2008)
Priority project no. 9 Restoration/ Protection of Coastal Environments

NAPA, Guinea Bissau (2008)
Priority project no. 3 Capacity building in Prevention and Protection of Mangrove Bolanhas against High-Tide Invasion Project

NAPA, Kiribati (2007)
Priority project no. 7 Coral monitoring, restoration and stock enhancement

NAPA, Mauritania (2004)
Priority project no 4 Introduction of 50 electric Moto-Pumps in the valley

NAPA, Niger (2006)
Priority project no. 7 Water Control
NAPA, Rwanda (2007)
Priority project no. 1 Lands conservation and protection against erosion and floods at districts level of vulnerable regions to climate change

NAPA, Senegal (2006)
Priority project no. 2 Utilisation rationnelle de l’Eau: Projet 1: Revitalisation du réseau hydrographique des bas-fonds, mares temporaires et lacs artificiels en appui au programme «bassins de rétention» Projet 2: Promotion des techniques de goutte à goutte

NAPA, Sierra Leone (2008)
Priority no. 7 Development of Irrigation and drainage systems for agricultural production in the Bombali District

Priority Project no. 3 Biodiversity conservation and restoration of Mangroves Marine Park

NAPA, Tuvalu (2007)
Priority project no.3 Adaptation to frequent water shortages through increasing household water capacity, water collection accessories, and water conservation techniques
http://unfccc.int/resource/docs/napa/tuv01.pdf

NAPA, Tuvalu (2007)
Priority project no.6 Strengthening Community Disaster Preparedness and Response Potential

NAPA, Tuvalu (2007)
Priority project no. 7 Adaptation to coastal shellfish fisheries resources productivity

NAPA, Uganda (2007)
Priority project no. 1 Tree Growing Project

NAPA, Uganda (2007)
Priority project no. 7 Vectors, Pests and Disease Control Project

NAPA, Vanuatu (2007)
Priority project no. 3 Community based marine resource management programmes (modern & traditional aquaculture)

NASA (2002)
NASA (2002)
Satellite image of "2002 African fires" part of a presentation on NASA's world wind program
Retrieved September 2010:

NASA (2010)
NASA (2010)
GLOBAL Land-Ocean Temperature Index in 0.01 degrees Celsius -base period: 1951-1980
Retrieved October 2010:
http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt

NASA Climate (2010)
Global Climate Change - Key Indicators
Retrieved October 2010:
http://climate.nasa.gov/keyIndicators
NCDC NOAA (2009)
National Climatic Data Center/NESDIS/NOAA (2009)
Precipitation Anomalies Jan-Dec 2009
Retrieved October 2010:

NCDC NOAA (2010)
National Climatic Data Center (2010)
Various resources
Retrieved August-October 2010:

Nelson et al. (2009)

NERI (2010)
National Environmental Research Institute (NERI Denmark)
http://www.dmu.dk/international/

NHC (2010)
US National Hurricane Center
Various resources
Retrieved November 2010: www.nhc.noaa.gov

Nicholls & Tol. (2007)
Managing coastal vulnerability and climate change: a national to global perspective.
In: Managing Coastal Vulnerability: An Integrated Approach (pp. 221-240)
Amsterdam, the Netherlands: Elsevier Science

Nicholls et al. (2007)
Coastal Systems and Low-lying Areas, In: M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, (Eds.)
Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 315-356)
Cambridge, UK: Cambridge University Press & IPCC

NSIDC (2010)
National Snow and Ice Data Center (NSIDC) (2008, June)
Glaciers
Retrieved September 2010:
http://nsidc.org/sotc/glacier_balance.html

OCHA (2010)
United Nations Office for the Coordination of Humanitarian Affairs (OCHA) (2010)
Global Food Crisis – Confronting Challenges
Retrieved September 2010:

OECD (2008)
OECD (2008)
Economic Aspects of Adaptation to Climate Change: Costs, Benefits and Policy Instruments

OECD (2010)
OECD (2010)
OECD Factbook 2010: Economic, Environmental and Social Statistics
Oreskes (2004)
Naomi Oreskes (2004)
Beyond the Ivory Tower: The Scientific Consensus on Climate Change
Science, vol. 306, no. 5702, p. 1686

Oxfam America (2008)
Oxfam America (2008)
Adaptation. How climate change hurts poor communities—and how we can help
Briefing Paper, published 14 April
Boston, US.: Oxfam America

Oxfam/Green Coast (2010)
Oxfam/Green Coast (2010)
Best Practice Guidelines on Restoration of Mangroves in Tsunami Affected Areas
Retrieved October 2010:
http://www.wetlands.org/LinkClick.aspx?fileticket=EaD3s%2bi5Mw%3d&tabid=56

Oxfam/Tearfund (2004)
London, UK: Overseas Development Institute

Pantuliano & Pavanello (2009)
Sara Pantuliano and Sara Pavanello (2009)
Taking drought into account: Addressing chronic vulnerability among pastoralists in the Horn of Africa
Briefing paper-HPG Policy Briefs 35

Parry et al. (2004)
Effects of Climate Change on Global Food production under SRES emissions and socio-economic scenarios
http://www.preventionweb.net/files/1090_foodproduction.pdf

Parry et al. (2007)
M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson (eds)(2007)
Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
Cambridge, UK: Cambridge University Press

Parry et al. (2009)
Assessing the costs of adaptation to climate change. A review of the UNFCCC and other recent estimates
London, UK: International Institute for Environment and Development, and Grantham Institute for Climate Change
http://www.iied.org/pubs/pdfs/11501IIED.pdf

Peduzzi (2005)
Pascal Peduzzi (2005)
Is climate change increasing the frequency of hazardous events?
Special Edition for the World Conference on Disaster Reduction January 18-22, 2005, Kobe, Japan
Petit et al. (1999)
Climate and Atmospheric History of the Past 420,000 years from the
Vostok Ice Core, Antarctica

Pielke Jnr (2007)
Hurricanes and IPCC
Colorado, US: Center for Science and Technology Policy Research, University of
Colorado
http://cstpr.colorado.edu/prometheus/archives/climate_change/001105final_
chapter_hurri.html

PLACE (2010)
CIESIN (2010)
PLACEII model - Population, Landscape, and Climate Estimates
http://sedac.ciesin.columbia.edu/place/datasets.jsp

Plummer et al. (2003)
Neil Plummer, Terry Allsopp, José Antonio Lopez (2003)
Guidelines on Climate Observation Networks and Systems
Geneva, Switzerland: World Meteorological Organization

Provention Consortium
Provention Consortium
http://www.proventionconsortium.org/?pageid=26

Rawls & Turnquist (2009)
Carmen G. Rawls and Mark A. Turnquist (2009)
Pre-positioning of emergency supplies for disaster response
Cornell, US: School of Civil and Environmental Engineering, Cornell University

Reacher et al. (2004)
Health impacts of flooding in Lewes: a comparison of reported gastrointestinal and
other illness and mental health in flooded and non-flooded households

Real Instituto Elcano (2009)
Elena Lopez-Gunn (2009)
Spain, Water and Climate Change in COP 15 and Beyond: Aligning Mitigation and
Adaptation through Innovation (WP)
WP 65/2009 - 24/12/2009
Real Instituto Elcano
eng/Content?WCM_GLOBAL_CONTEXT=/elcano/elcano_in/zonas_in/dt65-2009

Relief Web (2009)
Relief Web (2009)
WFP positioning food in Afghanistan ahead of harsh winter
Retrieved September 2010:
&RSS20=18-P

Resources For the Future (RFF)
Resources For the Future
Adapting to Climate Change - Global Adaptation Atlas (Database)
Retrieved September 2010:
http://www.rff.org/NEWS/CLIMATEADAPTATION/Pages/international_home.aspx

Reuters (2007)
Reuters (2007. 5 October)
Dengue Fever epidemic hits Caribbean, Latin America
Rheingans et al. (2006)
Economics of rotavirus gastroenteritis and vaccination in Europe: what makes sense?

Richardson et al (2009)
K. Richardson et al. (2009)
Synthesis Report – Climate Change: Global Risks, Challenges and Decisions
Copenhagen, Denmark: University of Copenhagen

Robine et al. (2008)
Death toll exceeded 70000 in Europe during the summer of 2003
C R Biol, vol. 331, pp. 171-78

Rodeil et al. (2009)
Matthew Rodeil, Isabella Velicogna, & James S. Famiglietti (2009)
Satellite-based estimates of groundwater depletion in India
Matthew Nature, vol. 460, pp. 999-1002

Rogers et al. (2000)
Rogers, D.J., Randolph, S.E. (2000)
The global spread of malaria in a future, warmer world

Sachs (2001)
Jeffrey D. Sachs (2001)
Macroeconomics and Health: investing in health for Economic Development
Commission on Macroeconomics and Health
Geneva, Switzerland: World Health Organization

Schmidt (2010)
Silvio Schmidt (2010)
Economic losses from tropical cyclones in the USA: An assessment of the impact of climate change and socio-economic effects
Approved Dissertation (May 2010)
Berlin, Germany: Fakultät VII – Wirtschaft und Management
der Technischen Universität Berlin

Schuur et al. (2008)
Edward Schur et al. (2008)
Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
Biöscience, vol. 58, no. 8

Scieneceray (2010)
Scieneceray (2010, April) The Sahel – Case Study (Desertification Causes, Measures, Consequences). Retrieved [November 2010]

SEI
SEI
WeAdapt and Wiki Adapt
www.weadapt.org

SEMARENA (2009)
Secretaría de Estado de Medio Ambiente y Recursos Naturales (SEMARENA) and UNDP (2009)
Proyecto Cambio Climático - Segunda Comunicación Nacional
Santo Domingo, República Dominicana: SEMARENA/PNUD/FMAM/UNDP

START
System for Analysis, Research & Training (START)
ACCA -Advancing capacity to Support Climate Change Adaptation
Retrieved October 2010:
http://start.org/programs/accca
Stefanski et al. (2007)
Applications of Meteorology to Agriculture, in: WMO/CAgM Guide to Agricultural Meteorological Practices (GAMP)
Geneva, Switzerland: World Meteorological Organization

Stern (2006)
Nicholas Stern (2006)
Stern Review on the Economics of Climate Change
HM Treasury
London, UK: Cambridge University Press

Stewart et al. (2003)
Mark G. Stewart, David V. Rosowsky, and Zhigang Huang (2003)
Hurricane risks and economic variability of strengthened construction
Natural Hazards Review, vol. 4, pp. 12-19

Sukhdev et. al (2008)
Pavan Sukhdev et. al (2008)
The Economics of Ecosystems and Biodiversity. An interim Report
European Communities
Cambridge, UK: Banson

Tanser et al. (2003)
F. Tanser, BL. Sharp, D. Le Sueur (2003)
Potential effect of climate change on malaria transmission in Africa

Tett et al. (1997)
Global and regional variability in a coupled AOGCM

The Boston Globe (2010)
Retrieved November 2010:

The Royal Society (2005)
The Royal Society (2005)
A guide to facts and fictions about climate change
Retrieved October 2010:

Tierney et al. (2008)
Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000 Years
Science, vol. 322, no. 5899, pp. 252-255

Tol (2002)
Richard Tol (2002)
New Estimates of the Damage Costs of Climate Change, Part I: Benchmark Estimates, and Part II: Dynamic Estimate

Toth et al. (2005)
in: Douglas Beard, Danielle Deane, Claudia Ringler, Detlef van Vuuren, Wang Rusong, Antonio La Vina, Mohan Munasinghe, Otton Solis (Eds.)
Millennium Assessment Report: Ecosystems and Human Well-Being (chap. 14)
Millennium Ecosystem Assessment
Washington D.C., US: World Resources Institute
U.S. Bureau of Reclamation (1999)
Integrated system for agricultural drainage management on irrigated farmland
Retrieved September 2010:
http://www.calwater.ca.gov/Admin_Record/D-042807.pdf

U.S. Environmental Protection Agency (2006)
Excessive Heat Events Guidebook
Washington D.C., US: US Environmental Protection Agency

UN (2006)
UN Global Survey on Early Warning Systems. An assessment of capacities, gaps and opportunities toward building a comprehensive global early warning system for all natural hazards
United Nations in cooperation with ISDR Platform for the Promotion of Early Warning (PPEW)

UN (2009a)
United Nations Educational Scientific and Cultural Organization (UNESCO), United Nations

UN (2009b)
Global Assessment Report on Disaster Risk Reduction
United Nations International Strategy for Disaster Risk Reduction (UNISDR), United Nations

UN (2010)
Population forecast: World Population Prospect: The 2008 Revision (Database)
United Nations

UN Statistics
UN Statistical Databases
United Nations Statistics Division, United Nations

UNCCD & Joint Liaison Group of the Rio Conventions (2007)
Forests - Climate Change, Biodiversity and Land Degradation
Joint Liaison Group of the Rio Conventions, United Nations Secretariat of the Convention to Combat Desertification (UNCCD), and United Nations Framework Convention on Climate Change (UNFCCC), United Nations
http://www.unccd.int/publicinfo/factsheets/pdf/forest_eng.pdf

UNCCD (2004)
Degradation of Rainfed Agricultural Land, Irrigated Agricultural Land, Ranching and Traditional Pastoral Lands, and Forest Lands, in:
Causes, general extent and physical consequences of land degradation in arid, semi-arid and dry sub-humid areas
United Nations Secretariat of the Convention to Combat Desertification (UNCCD), United Nations
Retrieved September 2010:
http://www.unccd.int/knowledge/INCDinfoSeg/partii.php

UNCCD (2009)
Discussion Paper: UNCCD Policy Brief on Migration
United Nations Secretariat of the Convention to Combat Desertification (UNCCD), United Nations
UNCCD Policy Brief (2009)
UNCCD (2009)
Land: A tool for climate change adaptation (Policy Brief)
United Nations Secretariat of the Convention to Combat Desertification (UNCCD), United Nations

UNDP (2007)
UNDP (2007)
United Nations Development Programme (UNDP), United Nations

UNDP (2008)
UNDP (2008)
Empowered and Equal: Gender Equality Strategy 2008-2011
New York, US: United Nations Development Programme (UNDP), Bureau for Development Policy, United Nations

UNDP (2009)
UNDP (2009)

UNDP (2010)

UNDP/ALM
UNDP
Adaptation Learning Mechanism (ALM)
Retrieved September 2010: www.adaptationlearning.net

UNDP/NAPA, Bangladesh (2005)
UNDP (2005)
National Adaptation Programme of Action – Bangladesh. Final Report
Ministry of Environment and Forest Government of the People’s Republic of Bangladesh, United Nations Development Programme (UNDP), United Nations
http://unfccc.int/resource/docs/napa/ban01.pdf

UNEP (2002)
UNEP (2002)
Global Environment Outlook 3 (GEO 3)

UNEP (2009)
Richard Munang, Jian Liu and Ibrahim Thiaw (eds.) (2009)
The Role of Ecosystem Management in Climate Change Adaptation and Disaster Risk Reduction
UNEP Copenhagen Discussion Series

UNEP (2010)
UNEP (2010)
Biodiversity and Human Well-being: Facts and Figures

UNESCO (2009)
UNESCO (2009)
Best Practice Guidelines for Structural Measures and Flood Proofing
The Mekong River Commission Secretariat
United Nations Educational Scientific and Cultural Organization (UNESCO), United Nations
Denmark’s Fourth National Communication on Climate Change
Danish Ministry of the Environment and the United Nations Framework Convention on Climate Change (UNFCCC), United Nations

UNFCCC (2009) UNFCCC (2009)
Least Developed Countries Step by Step Guide for implementing national adaptation programmes of action
United Nations Framework Convention on Climate Change (UNFCCC), United Nations

Step-by-step Guide for Implementing National Adaptation Programmes of Action
Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), United Nations

Emerging Trends in hazards, vulnerability patterns and the impact of disasters, in: Living With Risk – A Global Review of Disaster Reduction Initiatives (section 2)
United Nations International Strategy for Disaster Reduction, United Nations

Hyogo Framework for Action (HFA) 2005-2015: Building the resilience of nations and communities to disasters
United Nations International Strategy for Disaster Reduction (UNISDR), United Nations

Guidelines for implementing the Hyogo framework
United Nations International Strategy for Disaster Reduction (UNISDR), United Nations

USAID/NASA
United States Agency for International Development (USAID)
SERVIR (Regional Visualization and Monitoring System)
Cathalac, Group on Earth Observations, NASA
www.servir.net/

Vafeidist et al. (2008)

Vermeer & Rahmstorf (2009)
Martin Vermeer and Stefan Rahmstorf (2009)
Global sea-level linked to global temperature
Edited by William C. Clark, Harvard University, Cambridge, MA, and approved October 26, 2009 (received for review July 15, 2009)
Helsinki, Finland & Potsdam, Germany: Department of Surveying, Helsinki University of Technology, and Potsdam Institute for Climate Impact Research
Waithaka et al. (2010)
Adapting to Climate Change in Sub-Saharan Africa - Strategies for adapting to climate change in rural Sub-Saharan Africa
IFPRI Discussion Paper, 1013, July
International Food Policy Research Institute

Washington Post (2010)
Washington Post (2010, August 15) In the Russian wildfires, will Putin get burned?. Retrieved November 2010:
http://www.washingtonpost.com/wp-dyn/content/article/2010/08/13/AR2010081302642.html

Watkiss et al. (2005)
Paul Watkiss, Tom Downing, Claire Handley, Ruth Butterfield (2005)
The Impacts and Costs of Climate Change
Prepared as task 1 of the project: Modelling support for Future Actions – Benefits and Cost of Climate Change Policies and Measures
Final Report published September 2005
Brussels, Belgium: European Commission DG Environment

Welker (2009)
Lauren Welker(2009)
The Desertification of the Gobi Desert and Its Effect on Beijing
Texas, US: The University of Texas at Austin, Department of Geological Sciences
Retrieved September 2010:

WFP (2010)
World Food Programme (2010, 13 April)
Haiti: Bracing for the Hurricane Season
Retrieved September 2010:
http://www.wfp.org/stories/haiti-bracing-hurricane-season

WHO (2002)
WHO (2002)
Geneva, Switzerland: World Health Organization

WHO (2003)
How much disease could climate change cause?
In: AJ. McMichael, D. Campbell–Lendrum, C. Corvalan, K.L. Ebi, AK. Githeko, JS. Scheraga (eds.) Climate change and health: risks and responses (pp. 133–155)
Geneva, Switzerland: World Health Organization

WHO (2004)
Geneva, Switzerland: World Health Organization

WHO (2006a)
Tough Choices: Investing in Health for Development. Experiences from national follow-up to the Commission on Macroeconomics and Health
Geneva, Switzerland: World Health Organization

WHO (2006b)
WHO (2006)
Guidelines for testing -Mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Control of Neglected Tropical Diseases WHO Pesticide Evaluation Scheme
Geneva, Switzerland: World Health Organization
http://whqlibdoc.who.int/hq/2006/WHO_CDS_NTD_WHOPES_GCDPP_2006.3_eng.pdf

WMO World Meteorological Organization http://worldweather.wmo.int/

World Bank (2010b)
World Bank (2010)
Data on historic population and GDP figures: World DataBank
Retrieved August-October 2010:
http://data.worldbank.org/indicator

Susmita Dasgupta, Mainul Huq, Zahirul Huq Khan, Manjur Murshed, Zahid Ahmed, Nandan Mukherjee, Malik Fida Khan, Kiran Pandey (eds.)
Vulnerability of Bangladesh to Cyclones in a Changing Climate – Potential Damages and Adaptation Cost
Geneva, Switzerland: World Bank Development Research Group, Environment and Energy Team

World Resources Institute
World Resources Institute
Where are the World’s drylands?
Retrieved September 2010:
http://www.wri.org/publication/content/8236

World Resources Institute (2005)
World Resources Institute (2005)
Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-being: Desertification Synthesis
Washington D.C., US: World Resources Institute

WRI/CAIT
World Resources Institute
Climate Analysis Indicators Tool (CAIT)
Retrieved August-September 2010:
http://cait.wri.org

WWF
World Wildlife Foundation (WWF)
Climate Data Sections
Retrieved August-October 2010:
http://www.worldwildlife.org/climate/

Zimov et al. (2006)
Sergey Zimov, Edward Schuur, and F. Stuart Chapin (2006)
Climate Change: Permafrost and the Global Carbon Budget
Science, vol. 312, no. 5780, pp. 1612 – 1613